(Frederiksen) Tone output

Passion for science

Arduino experiment ~ 130135-EN Keywords tone(), blocking vs. non-blocking functions, arrays
Version 2018-07-05 / HS Level Basic course, module 6 p. 1/4

What you learn:

e Make a square wave on an output pin
e Understand blocking and non-blocking functions
e Usearrays

Use a passive piezo buzzer

1 - Connect a piezo buzzer on a breadboard

Different types of buzzers
Start mounting the buzzer as shown — note the unconnected wire.

In this project, we will use the piezo buzzer as a loudspeaker. There are two kinds of buzzers, and only one of these
can be used for this purpose. So you are advised to test the buzzer before you go ahead:

Connect one pin of the buzzer to GND and connect a wire to the other pin (as shown). Observe if there is a polarity
marking (+ or -). Connect the wire briefly to 5 V. If the buzzer buzzes or beeps it is a so-called active buzzer which
cannot be used. If it emits a small tick or rattle it is probably OK.

After the test, the wire is connected to one of the numbered Arduino pins (for instance pin 9).

Write the complete program in the setup() function
To be able to hear when the howling starts and stops we will not write the bulk of the programin loop () , like we
use to do. By writing everything in setup () the lines are executed only once. Enter and test:

const byte pinOut = 9;
void setup () {

tone (pinOut, 440,250); // Concert pitch (440 Hz) a quarter of a second (250 ms).
}

void loop () { // Nothing here
}

Note the lack of configuration of the output pin. It is not needed.

...

XL
-
o0 0000
o0 0000

© 0 00 0000000000000 0000
e 0o 0 00
e 0o 0 00

2
>

>

2J

Q

(=

[

=)

(=]

© 0 00 0000000000000 0000
© 0 0000 000000000000 000
© 0 00 0000000000000 0000
© 0 00 0000000000000 0000

=i] RN P
EZE %‘ ~5 e e e o o . e e
O ; sollm iy .
| 3 3
When you have finished the 2 2 et o
initial test, connect the wire to o]| B o °°
Arduino pin 9. oo ceeee oo

®
Tone output (?rederiksen) 130135-EN p. 2/4

Passion for science

Challenge 1
To produce a major triad, you can use the frequencies 440 Hz, 554 Hz, 659 Hz and 880 Hz.

Save the program. Try adding three extra lines with tone () calls to make the program play a triad.

The program should play four notes with increasing frequency.
Is it working as you thought? You may want to go back to the original program and compare the sound.

2 - Blocking and non-blocking function calls

Why doesn’t it work?
Most of the functions we have used in the previous modules, start (naturally) when they are called — and don’t return
control to the program until they are finished. A good example is delay () —exactly nothing is happening while we're

waiting. This type of functions is called blocking; the function blocks further program execution until it reaches its end.

It is possible to write functions that starts a given task, but then returns immediately after they have been called —
after which the task continues in the background. This is called a non-blocking function.

Arduino’s tone () function is non-blocking. The first three lines in your program each only begins — after which they
are interrupted by the next call of tone () . Only the last call “survives”.

This is a wonderfully clever feature in many situation — but right here, it is unwanted.

Write a blocking function that plays tones
This is not especially elegant, but it works: Add a line with delay (300) ; after each call of tone () inthe program.
Test it. It should work...

The extra 50 ms pause for each tone makes it easier to distinguish the individual tones.

OK —we’re getting a grip on the problem — time to add a little structure to the program. Instead of calling two
different functions for each tone, we will write a new function play () which then should call tone () and delay ().
We will continue working with frequencies, but the milliseconds should be replaced by something more “musical”.
When working with notes, you specify their duration as fractions of a whole note — here we chose to count in 16ths.

This is to be transformed into milliseconds by the function we are writing.
Somewhere in the program we define the conversion factor as a constant — the value 100 is suitable.

const int sixteenthsToMillis = 100;

Now, the duration of a whole note can be specified as 16, a half note as 8, etc.

Challenge 2
Write a function void play(int freq, int sixteenths) that plays atone whichis sixteenths longand
has a frequency of freq. The duration must be adjustable by changing sixteenthsToMillis to another value.

When called as shown below, the result must be a major triad (with a tiny delay between the tones).

play (440, 2);
play (554, 2);
play (659, 2);
play (880, 6);

(If you possess an extremely good sense of rhythm, you may feel that the best results are achieved by making the
combined duration of tone + tiny delay correspond to the specified duration. In practice, this can be done by using the
calculated duration directly in delay () while tone () is called with a duration that is e.g. 50 ms shorter.)

Tone output

(Frederiksen)

130135-EN p. 3/4

Passion for science

3 - Arrays

If we should want to play a longer melody with the
Arduino, quite a few lines are needed. It would give a
better overview if we could just write the tones in a long
row (similarly for the durations).

We will now introduce a way of handling this type of
data.

Up till now, the numbers we have used in programs
have been placed in variables, each having a specific
name. By using a data structure called an array, a row of
numbers is addressed using one name and an index.

See toolbox to the right.
This is just what we’re looking for...

In the code snippet shown below, two arrays are
defined with resp. the frequencies and the corres-
ponding duration for a number of tones.

There is also a variable notes, giving the length of the
two arrays. Note that it is given as sizeof (times) ,
which works because times is an array of bytes. There
is a point here: If you later wish to add more notes and
durations, this variable is automatically updated with
the new length.

Toolbox: Arrays
Example:
const int fr[] = {440,554,659,880};

This defines an array of integers with the length 4.
The individual array elements are numbered 0 to 3,
this number is called the index of the element.
For instance fr[2] has the value 659.
Example:

long al7];
This reserves space for an array of 1ong (4 byte

integers) of length 7. The elements have undefined
initial values.

Example:
int x = sizeof (fr);
int y = sizeof (a);

After these lines, x has the value 8 (there are 4
elements of 2 bytes), while y has the value 28 (i.e.
7 elements of 4 bytes).

If each element takes up 1 byte, sizeof () returns
the length of the array.

The individual elements in the two arrays are identified by specifying the index of the element in [square brackets].

Numbering starts at 0.

The value of freq[0] is 294. The value of times[7] is6.

const int freq[] =

const byte times[] = { 1, 3, 1, 4,

const byte notes = sizeof (times);

{294,294,294,392,392,440,440,588,494,392};

4, 4, 6, 2, 3};

Arrays are handled well ina for loop with a loop variable i that can be used as index. In this example, the loop
should start with 1=0 and end with i=notes-1. This means that the loop condition is i<notes.

Challenge 3

Complete the program. The tones in the freq array should be played with the corresponding durations in the

times array. Use a for loop for this.

4 - More details about tone()

These are a few more random details about this function...

One of the ideas behind making tone () a non-blocking function is to be able to emit sound signals without
interrupting the remaining tasks of the Arduino. You can for instance send out a warning beep and continue
measuring, calculating and controlling different outputs during the time that the beep lasts.

You can call tone () with only one parameter (the frequency). This will make the tone sound until stopped by a call

of the function noTone () .

When you use tone () , you cannot simultaneously use pins 3 or 11 for PWM signals. (See 130125-EN Arduino as a

dimmer.)

®
Tone output (?rederiksen) 130135-EN p. 4/4

Passion for science

5 - Amusical doorbell
Having come this far, you are now able to create one of the modern world’s technological miracles: The musical
doorbell ©

You need to add a pushbutton switch and to configure the pin you will use in setup () .

The melody should not start when the Arduino is turned on, so you got to move the playing away from the setup ()
function.

In loop () ,youneedan if construction that checks if the button has been pushed. As soon as it is, the small
melody should play.

Challenge 4

Based on the ideas above, write the program for the musical doorbell.

When finished, it should behave like this: When the button is pressed and released, the melody should play once. If
the button is kept down, the melody should repeat until the button is released and the melody is over.

