

TABLE OF CONTENTS
Parts ..3
Making the Projects...4
Getting Started...7
Project 1. Movement Alarm..10
Project 2. Lighthouse...12
Project 3. Shout-o-meter..14
Project 4. Thermometer...17
Project 5. Fan Speed Controller...20
Project 6. Automatic Fan...24
Project 7. Magic Music..27
The JavaScript Blocks Editor..29
Using MicroPython..31
Troubleshooting...32
What Next?..33
Notes..34
MonkMakes...36

Page 2

PARTS
micro:bit, battery and USB lead are not included in this kit.
Before you do anything else, check that your kit includes the following items:

Quantity

1 MonkMakes Speaker for micro:bit

(play sounds from your micro:bit)

1 MonkMakes Relay for micro:bit

(switch things on and off or control the
brightness of a light or the speed of a motor)

1 MonkMakes Sensor Board for micro:bit

(sense sound, temperature and light)

1 Set of alligator clip leads (10 leads)

1 Small motor with fan

1 Single AA battery box (battery not included)

1 Light bulb and holder

Page 3

MAKING THE PROJECTS

Software
Before connecting boards to your micro:bit install the program for the project onto
the micro:bit. This makes sure that pins are correctly configured as inputs and
outputs before you connect up the electronics.

This kit comes with programs for both the JavaScript Blocks Editor and for
MicroPython. If you are new to programming, then the Blocks editor is the best
place to start. If you want to use the MicroPython versions of the programs, then
please see the section Using MicroPython later in this booklet.

The Blocks editor program allows you to program your micro:bit directly from the
browser on your computer. All the programs for this kit are listed on a web page for
this kit's software at: monkmakes.com/mb_kit_code_1d shown below.

Clicking on one of the programs will open it in your browser so that you can then
install it on your micro:bit.

Page 4

Alligator Clips
The projects in this kit are assembled by connecting your micro:bit to one or more of
the MonkMakes boards using alligator clips. You have to be a bit careful how you
connect the clips at the micro:bit end. The correct way is to connect the clips
vertically as shown below.

Connecting the alligator clips like this prevents any accidental connections between
the large connectors with the holes in and the much smaller connectors (gold lines
in the photo above)

Building a Project
The micro:bit and the MonkMakes boards are pretty robust when it comes to
connecting things up the wrong way around, but its a good idea to unplug your
micro:bit from your computer while you are wiring things up. Then check it over
carefully before connecting your micro:bit to your computer.

Each project includes a wiring diagram, like the one that follows on the next page.
This shows you what needs to be connected to what. It suggests the colors of lead
to be used for each connection. The project will still work just fine, whatever color of
lead you use, but it makes it easier to see what's going on if you stick to the color
scheme, especially using red for 3V power connections and black for the ground
connection.

Page 5

Page 6

GETTING STARTED
To get you started with your kit, please follow the steps below. This does not use
any of the MonkMakes add-on boards, so for now you don't need the alligator clips.

If you have already used your micro:bits for other things, you can probably skip this
section.

Step 1. Plug your micro:bit into your computer.
Connect your micro:bit to a free USB port on your computer.

If your micro:bit is new, then its LED display will start displaying messages and
showing off various features of the micro:bit. You are going to replace this program
currently running on your micro:bit with a new one.

Step 2. Open The Blocks Editor
To install the new program (incidentally the program is called welcome) onto your
micro:bit, you first need to open it in the Blocks Editor. You can do this by going to
the following page on your computer's web browser:
monkmakes.com/mb_kit_code_1d

Page 7

Click on the project called welcome. This is what you should see when you click on
it.

Step 3. Install the Program
Next, you are going to send the welcome program to the micro:bit.

Click on the “Download” link at the bottom of the page. This will download a file for
the program ending in .hex. You will also see the prompt below.

As the prompt says, this hex file needs to be moved onto the micro:bit. The
micro:bit will show up as a USB drive on your computer. In other words, you need to

Page 8

drag the hex file from your Downloads folder onto the micro:bit icon in the file
explorer just as if the micro:bit were a USB flash drive.

If you are using a Mac, Linux or Raspberry Pi computer the process is the same,
but the file explorer tool will be different.

As soon as the hex file is dragged onto the micro:bit icon, a yellow LED on the back
of your micro:bit will start to flicker furiously as the program is flashed onto the
micro:bit. As soon as the flashing has finished, the welcome program will start and
display the message: Your electronics adventure begins.

Congratulations, you are now ready to move on to Project 1!

If you want to learn more about the Blocks Editor, then see the later section The
Blocks Editor.

Page 9

PROJECT 1. MOVEMENT ALARM

The program uses the micro:bit's built in accelerometer to measure any force acting
in the z dimension (vertically). If the micro:bit is lying completely flat this will be
-1023, but when the micro:bit is picked up, the force will change.

When the program first starts, it saves the current acceleration reading in a variable
called z. The forever loop then repeatedly checks the acceleration and if it has
fallen from its initial value (z) by more than 50 the alarm is sounded.

Page 10

Try tweaking the number 50, to alter how sensitive the alarm is. You can also pick
different tunes to play in the start melody block.

MicroPython Code
If you want to use the MicroPython versions of the programs rather than the Block
Editor code, then please see the section near the end of this booklet called Using
MicroPython for instructions on downloading and using the code.

Here is the MicroPython code for this project.

from microbit import *

import music

z = accelerometer.get_z()

while True:

 if accelerometer.get_z() < z - 50:

 music.play(music.BA_DING)

Page 11

PROJECT 2. LIGHTHOUSE

You will need:
• Micro:bit
• MonkMakes Relay for micro:bit
• Small bulb and holder
• Single AA battery holder and battery
• Program: P2 Light House

Flash the program P2 Light House onto your
micro:bit (see page 8) and then wire up the
Speaker, battery and light-bulb as shown to the
right.

This project will make the light bulb blink on and
off.

You might like to make yourself a cardboard
structure as the lighthouse and fix the light bulb on top.

How it Works
Here is the code for the project.

First Pin P0 is turned on using a digital write block. The 'pause' block then ensures
that it stays on for 1000 milliseconds (1 second) before it is turned off. There then
follows another pause of 2 seconds before the cycle repeats itself.

Page 12

MicroPython Code
If you want to use the MicroPython versions of the programs rather than the Block
Editor code, then please see the section near the end of this booklet called Using
MicroPython for instructions on downloading and using the code.

Here is the MicroPython code for this project.

from microbit import *

while True:

 pin0.write_digital(1)

 sleep(1000)

 pin0.write_digital(0)

 sleep(2000)

Page 13

PROJECT 3. SHOUT-O-METER

You will need:
• Micro:bit
• MonkMakes Sensor Board for

micro:bit
• Program: P3 Shoutometer

Flash the program P3 Shoutometer onto your
micro:bit (see page 8) and then connect up
the Sensor board as show to the right.

Make a noise near the microphone section of
the MonkMakes Sensor Board and you
should see the LEDs on the micro:bit light to
show the volume. The louder the noise, the
more LEDs will be lit.

How it Works
The microphone turns sounds into an electrical signal that looks something like this:

The voltage at the microphone output of the sensor board will always be between 0
and 3V, the signal swinging above and below a midpoint of about 1.5V. The number
of LEDs lit is calculated from how much this signal voltage is above the signal mid-
voltage (1.5V).

Page 14

Here is the code for the project:

The function analog read pin gives a number between 0 and 1023 depending on the
voltage at pin0. Since pin0 is connected to the microphone, the signal will vary
between 0 and 1023 as the sound wave oscillates. 511 is subtracted from the
reading to get the midpoint of the signal. This means that sometimes the result to
be displayed by the plot bar graph block will be negative, but that doesn't matter as
the bar graph plotter will just ignore those values.

The block plot bar graph lights more LEDs the bigger the number supplied to it. The
image below shows the result of a particularly loud noise!

Page 15

MicroPython Code
If you want to use the MicroPython versions of the programs rather than the Block
Editor code, then please see the section near the end of this booklet called Using
MicroPython for instructions on downloading and using the code.

Here is the MicroPython code for this project.

from microbit import *

def bargraph(a):

 display.clear()

 for y in range(0, 5):

 if a > y:

 for x in range(0, 5):

 display.set_pixel(x, 4-y, 9)

while True:

 sound_level = (pin0.read_analog() - 511) / 100

 bargraph(sound_level)

Page 16

PROJECT 4. THERMOMETER

You will need:
• Micro:bit
• MonkMakes Sensor Board for

micro:bit
• Program: P4 Thermometer or P4

Thermometer F (for Fahrenheit)

Flash the program P4 Thermometer (for
degrees C) or P4 Thermometer F (for
Fahrenheit) onto it (see page 8). Then
connect the Sensor board as shown.

Your micro:bit will display the temperature
of the MonkMakes Sensor Board's
temperature sensor (shown by the
thermometer symbol).

Try putting your finger on the sensor and
you should see the temperature start to
rise.

How it Works
The temperature sensor uses a component called a thermistor. A thermistor is a
component that resists the flow of current to a varying degree depending on its
temperature.

For this kind of thermistor, the greater the temperature, the less it resists the flow of
current. This effect is used to measure the temperature.

Page 17

The maths is necessary to convert the reading from the thermistor into a
temperature in degrees C. If you would prefer the reading to be in degrees
Fahrenheit then use the program P4 Thermometer F.

Calibration
If you want to make your thermometer more accurate, this section will show you
how to calibrate it.

To calculate the temperature whether in degrees F or C, the analog reading is first
multiplied by a number (A) the result is then divided by another number (B) and
then a positive or negative final number C is added to the result. To make your
thermometer more accurate you can use the program P4 Calibrate to find the
analog reading for two known temperatures (using a second thermometer) and then
calculate new values of A, B and C.

Step 1. Flash the program P4 Calibrate onto your micro:bit with the Sensor Board
wired up as described above.

Step 2. Record the temperature (either in F or C) using a second thermometer
placed close to the temperature sensor on the board. Then press button A and
record the value displayed. You can write both these values in the table below as I
have here, where the temperature in C was recoded as 18 degrees and the sensor
reading 460.

Step 3. Wrap an ice cube in a plastic bag and hold it against both the temperature
sensor on the Sensor Board and the second thermometer at the same time. Wait
for 30 seconds and then record both the second thermometer reading and the
reading displayed by the micro:bit (when you press button A). In this case the
readings were 0 degrees C and 345. Write them in the table too.

Step 4. Calculate A, B and C using the formulas in the table:

Room temperature using thermometer (t1) �*

Room temperature reading on Sensor (r1)
)�

Cold temperature using thermometer (t2) �

Cold temperature reading on Sensor (r2) 	
(

A = t1 – t2 �*

B = r1 – r2 ��(

C = t2 – (A / B) * r2 ��–���*���(���	
(����(

Once you have the values of A, B and C, you can change these value in your block
program.

Page 18

MicroPython Code
If you want to use the MicroPython versions of the programs rather than the Block
Editor code, then please see the section near the end of this booklet called Using
MicroPython for instructions on downloading and using the code.

Here is the MicroPython code for the Centigrade version of this project.

from microbit import *

while True:

 reading = pin1.read_analog()

 temp_c = reading * 0.157 - 54

 display.scroll(str(temp_c))

Page 19

PROJECT 5. FAN SPEED CONTROLLER

You will need:
• Micro:bit
• MonkMakes Relay for micro:bit
• AA Battery holder and battery
• Motor with fan attached
• Program: P5 Fan Speed

Flash the program P5 Fan Speed onto your
micro:bit (see page 8). Connect up the
components as shown to the right. Note it
doesn't really matter which way around the
motor leads are connected. Reverse them
and the motor direction will reverse.

The micro:bit display will show a number
between 0 and 9 indicating the fan's speed.
Use button B (on the micro:bit) to increase
the speed and button A to decrease the speed.

How it Works
This project uses the MonkMakes Relay to provide pulses of power of varying
length to the motor.

The code is the most complicated so far. It uses quite a few variables that are
defined in the on start block.

• min_power – This should be set to the minimum power output value that
makes the motor just start to turn. This varies a bit between motors. Try
the default value of 300, but if the motor doesn't turn when you press
button B to set the speed to 1, you may need to increase this value to
perhaps 400 or more.

• max_power – This is the maximum power, you can leave this as 1023

• power_step – This is the power range divided by 9 and will be the amount
of power change that results from one step more of speed.

• Speed – The speed from 0 (off) to 9 (maximum)

The forever loop is used to continuously set the power level to match the speed.
The case of the speed being 0 is treated as a special case, to set the power to 0,
otherwise the motor may buzz without actually turning when the speed is 0.

Page 20

The on button pressed blocks are very similar to each other. The one for button A
subtracts 1 from speed while making sure that speed does not fall below zero and
then displays the new speed and uses analog write to set the power output of pin 0.
The on button pressed for B does the same kind of thing, but adding 1 to speed.

The method of controlling the power that analog write uses is called Pulse Width
Modulation (PWM). It works by varying the duration of a series of pulses sent to the
Relay.

If the pulse is only high for a very short time (say 5% of the time) then only a small
amount of power is delivered to the motor so it will turn slowly. The more time the
pulse is high, the more power is delivered to the motor and the faster it will turn.

Page 21

MicroPython Code
If you want to use the MicroPython versions of the programs rather than the Block
Editor code, then please see the section near the end of this booklet called Using
MicroPython for instructions on downloading and using the code.

Here is the MicroPython code for this project.

from microbit import *

min_power = 300

max_power = 1023

power_step = (max_power - min_power) / 9

speed = 0

def set_power(speed):

 display.show(str(speed))

 if speed == 0:

 pin0.write_analog(0)

 else:

 pin0.write_analog(speed * power_step + min_power)

Page 22

set_power(speed)

while True:

 if button_a.was_pressed():

 speed -= 1

 if speed < 0:

 speed = 0

 set_power(speed)

 elif button_b.was_pressed():

 speed += 1

 if speed > 9:

 speed = 9

 set_power(speed)

 sleep(100)

Page 23

PROJECT 6. AUTOMATIC FAN

You will need:
• Micro:bit
• MonkMakes Sensor Board for

micro:bit
• MonkMakes Relay for

micro:bit
• AA Battery holder and battery
• Motor with fan attached
• Program: P6 Automatic Fan or

for a Fahrenheit version use
P6 Automatic Fan F

Flash the program P6 Automatic Fan
(for Centigrade) or P6 Automatic Fan F
(for Fahrenheit) onto your micro:bit (see
page 8). Then connect up the
components as shown to the right.
Check it over when you have finished, this one's quite complicated.

This project will display the temperature on the screen and automatically start the
fan when the temperature rises above the set temperature. The set temperature
starts at two degrees above the temperature when the program first runs. You can
increase or decrease the set temperature by one degree by pressing button B or
button A respectively.

To test the project out, set the set the set temperature to a few of degrees above
the current temperature and then put your finger on the temperature sensor area of
the MonkMakes Sensor board to simulate the room temperature rising. When the
temperature rises above the set temperature, the fan will start. Take your finger
away and after a few seconds, the sensor's temperature will fall back below the set
temperature and the motor will turn off again.

How it Works
The code for the centigrade version of this project is similar to the thermometer of
Project 4, except that a new variable called set_temp is needed to store the set
temperature and the forever loop has to check for the current temperature
exceeding the set_temp. When this happens digital write is used to turn on the relay
and hence the fan.

The on button pressed blocks add or subtract 1 from the set_temp.

Page 24

Page 25

MicroPython Code
If you want to use the MicroPython versions of the programs rather than the Block
Editor code, then please see the section near the end of this booklet called Using
MicroPython for instructions on downloading and using the code.

Here is the MicroPython code for this project.

from microbit import *

def read_temp_c():

 reading = pin1.read_analog()

 temp_c = round(reading * 0.157 - 54)

 return temp_c

set_temp = read_temp_c() + 2

while True:

 if button_a.was_pressed():

 set_temp -= 1

 display.scroll('Set' + str(set_temp))

 elif button_b.was_pressed():

 set_temp += 1

 display.scroll('Set' + str(set_temp))

 display.scroll(str(read_temp_c()))

 if read_temp_c() > set_temp:

 pin0.write_digital(1)

 else:

 pin0.write_digital(0)

Page 26

PROJECT 7. MAGIC MUSIC

You will need:
• Micro:bit
• MonkMakes Sensor Board for

micro:bit
• MonkMakes Speaker for

micro:bit
• Program: P7 Magic Music

Flash the program P7 Magic Music onto
your micro:bit (see page 8). Then
connect up the wiring as shown to the
right. Note how the Sensor board passes on the power from the micro:bit to the
Speaker.

Wave your had about in front of the light sensor and you should hear some
interesting sounds.

If your workspace is brightly lit and you don't hear any tones, you may need to
decrease the value of the variable multiplier from 20 to about 10 (see next section).

How it Works
Here's the code for the project.

Page 27

The variable multiplier is initially set to 20. This is used to increase the value of the
calculated light level to an audible frequency. So, if when you wave your hand in
front of the light sensor, all you hear are clicks, then try increasing this value. On the
other hand, if, as you move your hand closer to the light sensor, the pitch of the
sound rises too high to be audible, try decreasing the value of multiplier to 10.

As the program starts, it reads the light level and stores it in the variable
baseline_brightness. So, if you move your project to a brighter room, you will also
need to click the micro:bit's Reset button so that it measures the brightness of the
room again.

MicroPython Code
If you want to use the MicroPython versions of the programs rather than the Block
Editor code, then please see the section near the end of this booklet called Using
MicroPython for instructions on downloading and using the code.

Here is the MicroPython code for this project.

from microbit import *

import music

multiplier = 20

baseline_lightness = pin2.read_analog()

while True:

 lightness = pin2.read_analog()

 tone = baseline_lightness - lightness

 music.pitch(tone * multiplier)

 sleep(100)

Page 28

THE JAVASCRIPT BLOCKS EDITOR
If you want to modify one of the Block programs for the kit, you can do so by
clicking on the either of the two Edit buttons.

Clicking on the Edit button will then open the project in the Blocks Editor.

Page 29

One really nice feature of the Blocks editor is that the image of a micro:bit on the left
of the screen is a virtual micro:bit that you can run your programs on before flashing
them onto the micro:bit. You can press its buttons with your mouse, it will display
things and if you used the GPIO pins as digital outputs, it will even highlight them
when you write to them. You can also click on GPIO pins to simulate digital and
analog inputs. The middle section of the screen has different categories of blocks:
Basic, Input, Music etc. where you can find blocks to put onto the right-hand
‘canvas’ area. You can also use the Search box just above the list of block
categories if you are not sure where to find the block that you want. The Blocks
editor actually generates code in the JavaScript programming language and if you
click on the button “{} JavaScript” you can see the code that has been generated.
Clicking on “Blocks” takes you back to the blocks view of things, which is much
easier to follow.

Events
The JavaScript language that underpins the Block editor uses something called
“events”. The “on start” block that our welcome message appears in is an example
of an “event”. The event being that the micro:bit started up, because it was plugged
in or its reset button was pressed. Start a new project (by clicking on Projects and
then New Project) and delete both the on start and forever blocks. Add an on button
pressed (another event) block (in the Input category) and then place a show string
block inside it and change the text that the show string block is to display so that it
looks like this.

Now, when you use your mouse to click on button A in the virtual micro:bit it will
scroll the message. You could also now try this on a real micro:bit.

Page 30

USING MICROPYTHON
The code for this kit is available both as Block code and as MicroPython. If you
would like to run the Python versions of the programs rather than the Block code,
then you can download all the programs from Github here:
https://github.com/simonmonk/micro_bit_kit

Click on the green Clone or Download button and select the option Download ZIP.
Extract the ZIP archive and you will find a directory containing the python programs
for all the projects.

You can then use the Mu editor (https://codewith.mu/) to Load the downloaded
programs and then Flash them onto your micro:bit.

The MicroPython versions of the programs are modelled closely on their Block
equivalents and should be easy to follow.

Page 31

TROUBLESHOOTING
Problem: I can't flash a program onto my micro:bit

Solution: First check that the micro:bit's power LED is lit. If it isn't try a different
USB port or USB lead. If the micro:bit is receiving power, but you can't see the
micro:bit drive on your computer, then you may be using a 'power only' USB cable.
Try a different cable.

Problem: The LED isn't lit on the MonkMakes Relay for micro:bit even though I
think its connected correctly.

Solution: This is normal. The LED on the Relay will only light when the relay is
activated.

Problem: The temperature projects are not very accurate.

Solution: Limitations of the temperature sensor and the Block code's math
capabilities mean that the measured temperature is only an approximation. See the
section in project 4 on Calibration to make your readings more accurate.

Problem: The project doesn't work, but I'm pretty sure I have the right program
uploaded and all the wiring looks good. What can I do?

Solution: If you have checked everything and can't find a problem, then it is
possible that one of the alligator leads is broken – this can happen if they are over-
flexed. Try and think about which lead might be faulty. For example if the LED in the
MonkMakes logo for the Sensor or Speaker are not lit, then try swapping out the
power leads (3V and GND) from the micro:bit.

For other support questions, please check out the product's web page
(http://monkmakes.com/mb_kit) and you can send support questions to
support@monkmakes.com

Page 32

WHAT NEXT?

micro:bit Programming
If you want to learn more about programming the micro:bit in Python, then you
should consider buying Simon Monk's book 'Programming micro:bit: Getting Started
with MicroPython', which is available from all major book sellers.

You can find out more about this and other books by Simon Monk (the designer of
this kit) at: http://simonmonk.org or follow him on Twitter where he is @simonmonk2

Page 33

NOTES

Page 34

Page 35

MONKMAKES
For more information on this kit, the product's home page is here:
https://monkmakes.com/mb_kit

As well as this kit, MonkMakes makes all sorts of kits and gadgets to help with your
micro:bit and Raspberry Pi projects. Find out more, as well as where to buy here:
https://monkmakes.com you can also follow MonkMakes on Twitter @monkmakes.

Page 36

